Tetrahedron Letters No. 1, pp 23 - 26. © Pergamon Press Ltd. 1979. Printed in Great Britain. 0040-4039/79/0101-0023 \$02.00/0

SYNTHESES OF 1-BENZYL-1,4-DIHYDRONICOTINAMIDES CONTAINING DIPEPTIDES AND THEIR USE IN ASYMMETRIC REDUCTION OF ETHYL BENZOYLFORMATE

Takeshi ENDO, Hiroyuki KAWASAKI, and Makoto OKAWARA Research Laboratory of Resources Utilization, Tokyo Institute of Technology, Nagatsuta-cho 4259, midori-ku, Yokohama 227, Japan

It is known that stereospecific reduction of a pyruvate to D- or L-lactate by NADH is catalyzed by lactate dehydrogenase. The stereoselective nonenzymatic reductions of esters of pyruvic acid and benzoylformic acid by 1,4-dihydronicotinamide derivatives in the presence of metal ions have been reported. For instance, the reduction of ethyl benzoylformate with N- α -methylbenzyl-1-propyl 1,4-dihydronicotinamide (<u>1</u>) as a chiral model for NADH at room temperature proceeded quantitatively to give ethyl(R)-(-)-mandelate with an optical purity of 19%¹). Further, it has been reported that the reductions of menthyl esters of α -ketoacids with Hantsch esters are performed to afford corresponding menthyl mandelates with 70-80% optical yield²). Recently, Ohno et.al have reported that methyl mandelate with 97% optical yield is obtained in the reduction of methyl benzoylformate with diastereoisomers of N-(R)- α -methylbenzyl-1-propyl-2,4-dimethyl-1,4-dihydronicotinamide (<u>2</u>)³. This found is dramatically the highest value so far reported in the asymmetric reduction of α -keto esters.

We have previously reported that the reduction of ethyl benzoylformate by 1-benzyl-1,4-dihydronicotinamide (3-6) containing amide structure of α -amino acids such as glycine, L-alanine, L-leucine and L-phenylalanine is performed to obtain ethyl mandelate quantitatively with high optical yield⁴⁾. R-configuration was predominantly obtained in the case of <u>4</u> (optical purity; 47%) and <u>5</u> (optical purity; 26%), on the other hand, in the case of <u>6</u> (optical purity; 5%) Sconfiguration was given.

In this paper, we describe the syntheses of 1-benzyl-1,4-dihydronicotinamides (<u>12</u>) containing dipeptides such as L-alanyl-L-alanine, glycyl-L-alanine and L-alanyl-glycine, and their use in asymmetric reduction of ethyl benzoylformate as a model to examine the effect of peptide chain.

Syntheses of 12 were carried out by the method shown in scheme 1.

Scheme 1. Preparation of 1-Benzyl-1,4-dihydronicotinamides (<u>12</u>) containing Dipeptides

<u>7</u> was obtained by general DCC method in the presence of 1-hydroxybenzotriazole (HOBT) to prevent racemization. Treating <u>7</u> with a saturated methanolic solution of ammonia gas at 5°C, <u>8</u> was afforded in 80-90%. <u>10</u> was given by the reaction of nicotinic anhydride and <u>9</u> removed the protecting group (Z) with hydrobromic acid from <u>8</u>, in the presence of triethylamine at 0°C. The results are shown in Table 1.

Pyridinium salt $(\underline{11})$ was obtained, as a hygroscopic white powder, by the reaction of $\underline{10}$ and benzyl chloride at 70°C in dimethylsulfoxide (DMSO), as indicated in Table 2. Dihydro compounds ($\underline{12}$) were given by the reduction of $\underline{11}$ with sodium dithionitepotassium carbonate in the presence of benzyltriethylammonium chloride⁵⁾, as shown in Table 3.

Table 1. Preparation of 10								
(Compo R ¹	ounds R ²	Yield (%)	mp (°C)	[α] ²³] _D			
8a	СНз	CH ₃	64	267-270	+40.2			
8b	н	CH ₃	52	207-209	+1.0			
8c	CH_3	H	79	201-203	+28.5			

in DMSO, c=1

The structures of 10, 11 and 12 were identified by IR, NMR and elemental analyses.

Table 2.	Synthes Compo R ¹	Syntheses of Compounds R ¹ R ²		[α] ^{23²⁾ D}	_{λmax} 3) (nm)
	lla CH ₃	СНз	87	-28.2	265
	llb H	СНЗ	98	-23.6	264
	llc CH3	н	83	-2.2	264

1) Benzylation step, 2) in H_2O , c=1, 3) in H_2O

Table 3. Preparation of 1,4-Dihydronicotinamides (12)

Compo R ¹	unds R ²	Yield (%)	mp (°C)	[α] _D ^{23¹⁾}	_{λmax} 2) (nm)
12a CH3	СН3	96	120-123	+39.2	356
12b H	CH3	48	183-187	-10.2	355
12c CH3	н	50	154-157	+15.0	356

1) in MeOH, c=1, 2) in EtOH

The reduction of ethyl benzoylformate with <u>l2a-l2c</u> was attemped. The typical example is as follows. A mixture of 2.9 mmole each of ethyl benzoylformate, <u>l2b</u> and magnesium perchlorate in 100 ml of acetonitrile was allowed to react for 10 days at a room temperature. After removing acetonitrile, 30 ml of water was added. The solution was extracted three times with ether. Ether was removed in vacuo and the residue was column-chromatographed on silica gel and eluted with benzene. Ethyl mandelate was obtained and perchlorate salt (<u>llb</u>') was recoverd from the aqueous solution in 85-90% yield.

The configuration and optical purity of obtained ethyl mandelate are shown in Table 4.

1,4-Dihydro-		Reaction	Product (Ethyl mandelate)				
nic	nicotinamides R ¹ R ²		Time(day)	Yield(%)	[a] _D ^{23¹)}	configuration	optical purity(%) ²
12a	CH3	СН3	10	54	-46.8	R	45
12b	н	CH3	10	100	+36.4	S	35
12c	сн3	н	10	64	-26.4	R	25
	1)	99 59	EtoH and	2) pure	othyl ma	$rdelate [\alpha]^{24} = -$	104.6)

Table 4. Asymmetric reduction of ethyl benzoylformate by use of <u>12a-12c</u>

1) 99.5% EtOH, c=1 2) pure ethyl mandelate $[\alpha]_D^{-}=-104^{\circ}$

High yields based on ethyl benzoylformate and enantio-differentiating reaction with high optical yield by the reduction with model compounds 12a-12c were observed. It is also extremely interesting that R-configuration was predominantly obtained in the case of 12a and 12c, while S-configuration was given in the case of 12b.

The reaction mechanism of asymmetric reduction by NADH model in the presence of metal ions has been studied in detail⁷⁻⁹. We can not know exact mechanism in these reduction at present time, although the effect of the inter- or intramolecular hydrogen bonding by peptide linkage may be suggested.

The investigation on the reaction mechanism in these asymmetric reduction are now in progress.

References and Notes

1) Y.Ohnishi, M.Kagami, and A.Ohno, J.Amer.Chem.Soc., 97,4766(1975).

- 2) K.Nishiyama, N.Baba, J.Oka, and Y.Inoue, J.Chem.Soc., Chem.Commun., 101(1976).
- 3) A.Ohno, M.Ikeguchi, T.Kimura, and S.Oka, J.Chem.Soc., Chem.Commun., 328(1978).
- 4) T.Endo, Y.Hayashi, and M.Okawara, Chem.Letters, 391(1977).
- 5) It has been reported that sodium 1-benzyl-1,4-dihydronicotinamide-4-sulfinate (BNA-SO₂Na) can be isolated as an intermediate in the course of the reduction of 1-benzylnicotinamide chloride (BNA⁺Cl⁻) with sodium dithionite to 1-benzyl-1,4-dihydronicotinamide (BNAH). J.F.Biellmann and H.J.Callot, Bull.Soc.Chem. Fr., 1154(1968)) We found that BNAH is obtained with excellent yield in the presence of a tetraalkylammonium chloride without forming BNA-SO₂Na.
- 6) R.Roger, J.Chem.Soc., 2168(1932).
- 7) R.A.Gase, G.Boxhoorn, and U.K.Pandit, Tetrahedron Letters, 2889(1976).
- 8) K.Watanabe, R.Kawaguchi, and H.Kato, Chem.Letters, 255(1978).
- 9) A.Ohno, T.Kimura, H.Yamamoto, S.G.Kim, S.Oka, and Y.Ohnishi, Bull.Chem.Soc.Jpn., 50, 1535(1977), ibid., 51 290, 294(1978).

(Received in Japan 6 October 1978)